
 1

CS 5900 Compiler Design and Construction

Instructor: Dr. Chen-Fu Chiang

Time: Tuesday 8:40 AM - 11:20 AM

Location: Summit Center 151

Office Hours: Wednesday 3:00 PM - 5:00 PM and Friday 9:00 AM – 12 PM at

Summit Center Room 138 or by appointment

Office: WCM 126 B

Email: cchiang@ucmo.edu (preferred and fastest)

Prerequisite: CS 3100 or consent of the instructor

Course Description

 I. Purpose of the Course

This course is designed for computer science students and is intended to

introduce them to the fundamental concepts of compiler construction.

Compiler construction is an important branch of computer science.

Studying the parts of a compiler and compiling process is essential in the

understanding of any language.

II. Objectives and Desired Student Competencies

Upon completion of this course the student should be able to:

 Understand grammars and finite automata, and languages.

 Implement various phases in the compiling process.

III. Course Content Outline

Text: Compiler Construction Principles and Practices, Kenneth Louden,

PWS 1997

mailto:cchiang@ucmo.edu

 2

A. Introduction

1. History

2. Programs Related to Compilers

3. Major Data Structures in a Compiler

B. Scanning

1. The Scanning Process

2. Regular Expressions and Finite Automata

3. Lex: a Scanner Generator

C. Context-Free Grammar

1. The Parsing Process

2. Context-Free Grammars

3. Parse Trees and Abstract Syntax Trees

4. Ambiguity

5. Formal Properties of Context-Free Languages

D. Top-Down Parsing

1. Top-Down Parsing by Recursive-Descent

2. LL(1) Parsing

3. First and Follow Sets

E. Bottom-Up Parsing

1. Overview of Bottom-Up Parsing

2. Finite Automata of LR(0) Items and LR(0) Parsing

3. Yacc: an LALR (1) Parser Generator

4. Error Recovery

F. Semantic Analysis

1. Attributes and Attribute Grammars

2. Algorithms for Attribute Computation

3. The Symbol Table

4. Data Types and Type Checking

G. Code Generation

1. Data Structure for Code Generation

2. Basic Code Generation Techniques

 3

IV. Procedures/Assessment

The lecture format will be the basic mechanism used in the course. Computer

demonstrations in the classroom will be used whenever appropriate. Assessment of

student performance will use a criterion referenced model which will include

written assignments (30%, might contain programming assignments), regular

examinations (midterm 30%) and a comprehensive final exam (40%). Assignments

must be turned in at the beginning of the class on the due date. Late assignment

will not be accepted due to the short period of summer section. All examinations

are closed-book

 A typical grading scale will be as follows:

Percent Grade

90 -100 A

80 - 89 B

70 - 79 C

60 - 69 D

below 60 F

Plagiarism and Cheating of any kind on an examination, quiz, or assignment will

result at least in an F for that assignment (and may, depending on the severity of

the case, lead to an F for the entire course). See the UCM Academic Dishonesty

Policy at http://www.ucmo.edu/student/documents/honest.pdf. I will assume for this

course that you will adhere to the academic creed of this University and will

maintain the highest standards of academic integrity. In other words, do not cheat

by giving answers to others or taking them from anyone else. Make-ups are only

given under extreme circumstances. I will also adhere to the highest standards of

academic integrity, so please do not ask me to change (or expect me to change)

your grade illegitimately or to bend or break rules for one person that will not

apply to everyone.

