CS 518: Problem Set 3

Section: MW 12-1:30 pm

Total: 100pts Due: 11/16/2015

Problem 1 Simon's Algorithm: 28 pts

Suppose we run Simon's algorithm on the following input x (with $N=8$ and hence $n=3$): We have
$x_{000}=x_{111}=000 \quad x_{001}=x_{110}=001$
$x_{010}=x_{101}=010 \quad x_{011}=x_{100}=011$
Note that x is 2 -to1 and $x_{i}=x_{i \oplus 111}$ for all $i \in\{0,1\}^{3}$, so $s=111$. (a) Give the starting state of Simon's algorithm.
(b) Give the state after the first Hadamard transforms on the first 3 qubits.
(c) Give the state after applying the oracle.
(d) Give the state after measuring the second register (the measurement gave $|001\rangle$.
(e) Use $H^{\otimes n}|i\rangle=\frac{1}{\sqrt{2}} \sum_{j \in\{0,1\}^{n}}(-1)^{i \cdot j}|j\rangle$, give the state after the final Hadamard.
(f) We does measurement of the first 3 qubits of the final state give the information about s ?
(g) Suppose the first run the the algorithm gives $j=011$ and a second run gives $j=101$. Show that, assuming $s \neq 000$, those two runs of the algorithm already determine s.

Problem 2 Fourier Transform: 30 pts

(a) For $\omega=e^{2 \pi i / 3}$ and $F_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right)$, calculate $F_{3}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $F_{3}\left(\begin{array}{c}1 \\ \omega^{2} \\ \omega\end{array}\right)$.
(b) Let the Fourier transform defined as what we described in class, ie. $\omega_{=} e^{2 \pi i / N}$ and entry at location (i, j) is $e^{2 \pi i j k / N}$ where $0 \leq j, k<N$. Let $\left|C_{k}\right\rangle$ be the $k_{t h}$ column of F_{N}. Please show that

$$
\left\langle C_{k}^{\prime} \mid C_{k}\right\rangle= \begin{cases}1 & \text { if } k=k^{\prime} \\ 0 & \text { if } k \neq k^{\prime}\end{cases}
$$

(c) Prove the identity in equation 7.1 .18 in the textbook.

Problem 3 Euclidean distance: 12 pts

The Euclidean distance between two states $|\phi\rangle=\sum_{i} \alpha_{i}|i\rangle$ and $|\psi\rangle=\sum_{i} \beta_{i}|i\rangle$ as $|\| \phi\rangle-|\psi\rangle \mid \|=\sqrt{\sum_{i}\left|\alpha_{i}-\beta_{i}\right|^{2}}$ Assume the states are unit vectors with real amplitudes. Suppose the distance is small: $|\| \phi\rangle-|\psi\rangle \|=\epsilon$. Show that the probabilities resulting from a measurement on the two states are also close: $\sum_{i}\left|\alpha_{i}^{2}-\beta_{i}^{2}\right| \leq 2 \epsilon$. (Hint use Cauchy-Schwarz inequality)

Problem 4 Analysis Technique Proof: 10 pts

In quantum counting or the hard case analysis of Shor's algorithm, the following analysis technique is commonly used: $\left|1-e^{i \theta}\right|=2\left|\sin \left(\frac{\theta}{2}\right)\right|$ Please prove this equality.

Problem 5 Root of Unity: 10 pts

Prove that if a operator U satisfies $U^{r}=I$, then the eigenvalues of U must be r th roots of 1 .

Problem 6 Gate Approximation: 10 pts

As mentioned in class that the implementation of QFT inverse will be difficult if the precision requirement is high for the control rotation gates. Based on the SolovayKitaev's decomposition theorem, there is always a way to approximate a single qubit gate with error at most ϵ using $O\left(\log ^{c}(1 / \epsilon)\right)$ gates from the universal gate where the optimal c is some number slightly less than 2. Please describe (sketch) the proof of this theorem.

