MAT 115: Problem Set 3

Section: MW 4-5:50 pm

Due: 10/28/2015

Problem 1 Power Set

Let $A=\{1,3,5,6,7\}$ and suppose B is the power set of A , i.e. $B=\mathcal{P}(A)$.
(a) Please list the elements (subsets of A) in B.
(b) Let $C=\mathcal{P}(B)$. How many elements (subsets) are there in C ?

Problem 2 Binomial Recursion

Please show

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Problem 3 Induction Proof

Please prove the following by using induction proof. Make sure you mark the base case, hypothesis and the induction step clearly.
(a) Please show

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(b) Please show

$$
\sum_{i=1}^{n}(2 i+1)=n(n+2)
$$

Problem 4 Rational Number

Sow that $\sqrt{5}+3$ is not rational, provided that we know $\sqrt{5}$ is not rational.

Problem 5 Other Proof Techniques: [Counterexample, Contrapositive, Contradiction, Case by case]

Prove the statement if true, otherwise find a counterexample. When you prove, if you see if and only if in the statement, you are supposed to prove for both directions.
(a) $\forall m, n \in \mathbb{Z}, m^{3}-n^{3}$ is even if and only if $m-n$ is even.
(b) $\forall n \in \mathbb{Z}, n^{2}-n+2$ is even.
(c) For all distinct positive integers m and n, both m and n are perfect squares if and only if $m+2 m^{1 / 2} n^{1 / 2}+n$ is a perfect square.
(d) For all distinct positive integers m and n, both m and n are perfect squares if and only if $m^{1 / 2} n^{1 / 2}$ is an integer.

Problem 6 Practice Problems

For practice only. You do not have to turn in the solution.
Unit SF: 1.21
Unit NT: 1.2, 1.3, 1.4(b), 1.13, 1.14, 1.23, 1.27, 1.28

