

NYS FAIR EVENTS MOBILE

APPLICATION WITH CLIENT-SIDE

CACHING

A Master’s Project

Presented to

Department of Computer and Information Sciences

SUNY Polytechnic

Institute

Utica, New

York

In Partial Fulfilment of the requirements for the Master of Science Degree

By

Sumant Kanala

(U00287895)

December 2017

© SUMANT KANALA 2017

NYS Fair Events Mobile application with client-side caching

Master of Science project in Computer and Information Sciences

Department of Computer Sciences

SUNY Polytechnic Institute

Approved and recommended for acceptance as a project in partial fulfillment of the

requirements for the degree of Master of Science in Computer and Information Sciences

Date

Chen-Fu Chiang, Ph. D. (Adviser)

Iulian Gherasoiu, Ph. D.

Ali Tekeoglu, Ph. D.

NYS Fair Events Mobile application with client-side caching

Declaration

I declare that this project is my own work and has not been submitted in any form for another degree

or diploma at any university or other institute of tertiary education. Information derived from the

published and unpublished work of others has been acknowledged in the text and a list of references

is given.

Sumant Kanala

Abstract

NYS Fair Events collects data about fair events which happen in New York state throughout

the year, bundles them, displays the upcoming events and useful information about the event

itself, the weather and forecast prediction, and a Google Maps to show the route to the event

from the user’s location.

The motivation for creating this project arose with understanding the growing market for

mobile applications and by working for a startup for several months now in the field of web

development. A trend has been established in which more users are switching towards mobile

apps as their preferred information exchange tool than their traditional PCs and hence the

development of better apps should be geared towards mobile phones and tablet PCs.

The development of the app is mainly divided into two steps, the client and server side. For

the client side I developed a Cordova-based mobile app which is cross-platform and can be

compiled to work on Android and IOS based mobile devices. For the server side, I used

Node.js runtime environment and deployed it onto Heroku’s free dyno tier which is a cloud-

based Platform as a service (paaS). Based on user’s actions, data is requested from the

server’s endpoints and appropriate information is served and shown to the user in an intuitive

manner.

Contents

Abstract ...4

Chapter 1: Introduction ...7

1.1 Cordova ..8

1.2 Node.js. ...10

Chapter 2: Communication between client and server ...11

2.1 Client-Server Model ..11

2.2 Client and Server role ……...11

2.3 Client and Server communication ..12

Chapter 3: Requirements …..13

3.1 Events Data ………………………..13

3.2 Tools and Libraries ..13

3.2.1 Backend Libraries …..13

3.2.2 Frontend Tools/Libraries/Framework ..14

Chapter 4: Functionality ..15

4.1 Events List Page ……..15

4.1.1 Server Side ...16

4.1.2 Client Side ..19

4.2 Events Information Page ...25

4.2.1 Client Side ... 27

4.2.2 Server Side ...28

4.2.3 Back to Client Side ..29

4.3 Improvements and Usability features …………..32

4.3.1 Server-side scalability ……………...32

4.3.2 Client-side enhancements ……...33

References ...34

List of Figures

Figure 1: Apache Cordova Logo ...7

Figure 2: Node.js logo ...……………………..8

Figure 3: Client-Server Model ...10

Figure 4: Landing page on mobile showing events ..15

Figure 5: Library Imports for server code ..16

Figure 6: Body parser middleware ...16

Figure 7: Access Control Headers ...17

Figure 8: Weather API Initialization ...17

Figure 9: Weather API Initialization with API key used from environment variables18

Figure 10: GET API endpoint for the list events ...18

Figure 11: Bootstrapping Angular into HTML ..19

Figure 12: Route Provider for rendering dynamic views...19

Figure 13: Container div with main heading tag on main.html.................................20

Figure 14: Spinning Loader div layout ………...21

Figure 15: Spinning Loader in action ...22

Figure 16: Controller code in html to display list events ...22

Figure 17: MainCTRL controller ..23

Figure 18: Function which takes user to next view...24

Figure 19: (i) Events Information view/page on an Android mobile25

 (ii): Daily data weather information …..26

 (iii): Extended weather information …...26

Figure 20: WeatherAndMaps.html ..27

Figure 21: EventCTRL controller ...27

Figure 22: POST API endpoint for event information ...28

Figure 23: Success callback of the POST request ..29

Figure 24: WeatherAndMaps.html file: (i) back button and temperature toggle30

 (ii): Current temperature …..30

 (iii): Hourly weather row data …...30

 (iv): Daily weather in three columns data …...31

 (v): Additional weather information …..32

 (vi): Link to go to Google Maps …...32

 (vii): div which loads Google Maps …...32

Figure 25: Master forking worker processes …...32

Figure 26: Toggle Switch State: (i) Toggle switch off ………………………........33

 (ii): Toggle Switch animation happening when user clicks ………...........33

 (iii): Toggle switch on …………………..33

Chapter 1: Introduction

1.1 Cordova

Apache Cordova (formerly PhoneGap) is an open source, hybrid mobile application

development framework originally created by Nitobi. Adobe Systems purchased Nitobi in

2011, rebranded it as PhoneGap, and later released an open source version of the software

called Apache Cordova.

Apache Cordova enables software programmers to build applications for mobile devices

using CSS3, HTML5, and JavaScript instead of relying on platform-specific APIs like those

in Android, iOS, or Windows Phone.

The resulting applications are hybrid, meaning that they are neither truly native mobile

application (because all layout rendering is done via Web views instead of the platform's

native UI framework) nor purely Web-based (because they are not just Web apps, but are

packaged as apps for distribution and have access to native device APIs).

The core of Apache Cordova applications use CSS3 and HTML5 for rendering

and JavaScript for logic. HTML5 provides access to underlying hardware such as the

accelerometer, camera, and GPS. However, browsers' support for HTML5-based device

access is not consistent across mobile browsers, particularly older versions of Android. To

overcome these limitations, Apache Cordova embeds the HTML5 code inside a

native WebView on the device, using a foreign function interface to access the native

resources of it.

Apache Cordova can be extended with native plug-ins, allowing developers to add more

functionalities that can be called from JavaScript, making it communicate directly between

the native layer and the HTML5 page. These plugins allow access to the device's

accelerometer, camera, compass, file system, microphone, and more.

https://en.wikipedia.org/wiki/Multiple_phone_web-based_application_framework
https://en.wikipedia.org/wiki/Multiple_phone_web-based_application_framework
https://en.wikipedia.org/wiki/Nitobi
https://en.wikipedia.org/wiki/Adobe_Systems
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/CSS3
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Windows_Phone
https://en.wikipedia.org/wiki/CSS3
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/GPS
https://en.wikipedia.org/w/index.php?title=WebView&action=edit&redlink=1
https://en.wikipedia.org/wiki/Foreign_function_interface
http://docs.phonegap.com/en/3.0.0/guide_hybrid_plugins_index.md.html#Plugin%20Development%20Guide

Figure 1: Inner workings of Apache Cordova [2]

1.2 Node.js

Node.js is cross-platform runtime used to write server-side code in JavaScript. JavaScript was

used for client-side programming, in which scripts were written and embedded into the

webpage's HTML, which is parsed and executed by the JavaScript engine in the client's web

browser. Node.js enables JavaScript to be used for server-side scripting, and runs scripts

server-side to produce dynamic web page content before the page is sent to the user's web

browser. Consequently, Node.js has become one of the foundational elements of the

"JavaScript everywhere" paradigm, allowing web application development to unify around a

single programming language, rather than rely on a different language for writing server side

scripts which makes it slightly easier and faster to develop applications.

Though “.js” is the conventional filename extension for JavaScript code, the name “Node.js”

does not refer to a particular file in this context and is merely the name of the product. Node.js

has an event-driven architecture capable of asynchronous I/O. These design choices aim to

optimize throughput and scalability in Web applications with many input/output operations,

as well as for real-time Web applications (e.g., real-time communication programs

and browser games).

Corporate users of Node.js software include GoDaddy, Groupon, IBM, LinkedIn, Microsoft,

Netflix, PayPal, Rakuten, SAP, Tuenti, Voxer, Walmart, Yahoo!, and Cisco Systems.

Node.js is primarily used to build network programs such as Web servers. The biggest

difference between Node.js and PHP is that most functions in PHP block until completion

(commands execute only after previous commands have completed), while functions in

Node.js are designed to be non-blocking(commands execute concurrently or even

in parallel, and use callbacks to signal completion or failure) [3].

Figure 2: Node.js Logo [4]

https://en.wikipedia.org/wiki/Client-side_scripting
https://en.wikipedia.org/wiki/Server-side_scripting
https://en.wikipedia.org/wiki/Dynamic_web_page
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/Event-driven_architecture
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Real-time_Web
https://en.wikipedia.org/wiki/Real-time_communication
https://en.wikipedia.org/wiki/Browser_game
https://en.wikipedia.org/wiki/GoDaddy
https://en.wikipedia.org/wiki/Groupon
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/LinkedIn
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Netflix
https://en.wikipedia.org/wiki/PayPal
https://en.wikipedia.org/wiki/Rakuten
https://en.wikipedia.org/wiki/SAP_SE
https://en.wikipedia.org/wiki/Tuenti
https://en.wikipedia.org/wiki/Voxer
https://en.wikipedia.org/wiki/Walmart
https://en.wikipedia.org/wiki/Yahoo!
https://en.wikipedia.org/wiki/Cisco_Systems
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Callback_(computer_programming)

Chapter 2: Requirements

2.1 Events Data

Data regarding events information such as venue, description, location are obtained from the

official NYS website and the weather data is obtained darksky.net (formerly OpenWeather).

Darksky.net is an open source, cost-free weather gatherer website through which data can be

obtained through REST API calls. A developer must register and sign up for an API key and

using that in the appropriate programming language of their choice, so that it is used to make

calls for weather data for a location.

2.2 Tools and Libraries

A myriad of open source tools and libraries are used in this project, thanks to the ever-growing

interest among developers for encouraging open source software.

2.2.1 Backend Libraries (Node.js)

• fs – File System [5]: File I/O is provided by simple wrappers around standard POSIX

functions. To use this module execute require('fs') command. All the methods have

asynchronous and synchronous forms.

The asynchronous version takes a completion callback as its last argument. The

arguments passed to the completion callback depend on the method, but the first

argument is always reserved for an exception. If the operation was completed

successfully, then the first argument will be null or undefined.

When using the synchronous form any exceptions are immediately thrown. Exceptions

may be handled using try/catch, or they would be handled in the outermost parent

function which called it.

Example code snippet of the asynchronous version:

const fs = require('fs');

fs.unlink('/user/tmp.txt', (err) => {

 if (err) throw err;

 console.log('successfully deleted /user/tmp.txt!!');

});

Example code snippet of the synchronous version:

const fs = require('fs');

fs.unlinkSync('/user/tmp.txt);

console.log('successfully deleted /user/tmp.txt!!');

• body-parser [6]: Parse incoming HTTP request bodies in a middleware before your

handlers, available under the ‘req.body’ property. Parsers can be of following forms:

i) JSON body parser

ii) Raw body parser

iii) Text body parser

iv) URL-encoded form body parser

• Express [7]: A simple framework on top of node to organize your web application

into and MVC architecture on the server side. Different templating engines can be used

for the view such as Pug, EJS, Jade, etc.. Many kinds of database wrappers are

available for both relational and unstructured database systems such as MYSQL,

Mongoose for MongoDB, Redis, DynamoDB, etc..

• Request [8]: A library for making simple HTTP calls and which supports https by

default. We use this to make request to https://nysfair.ny.gov and its corresponding

subdomains from which we get our events data.

• Cheerio [9]: This is a crucial library which is used to parse HTML from the context

of server. It uses the core concepts of jQuery, which is a popular frontend library.

• Forecast [10]: This is the library which provides us the weather information about any

region in the world given the latitude and longitude. Implementation coming up below

to see it in action.

3.2.1 Frontend Tools/Libraries/Framework

• AngularJS [11]: It is a JavaScript full stack framework which lets developers tie

HTML with dynamic views and add extended HTML vocabulary to enhance the

application. It’s easy to use syntax and readability make it one of the most popular

Single Page Applications (SPAs).

SPAs are Web apps that load a single HTML page and dynamically update that page

as the user interacts with the app. SPAs use AJAX and HTML5 to create fluid and

responsive Web apps, without constant page reloads. However, this means much of

the work happens on the client side, in JavaScript.

• Font Awesome [12]: An awesome icon pack which contains nearly all useful utility

icons.

• Weather-icons [13]: Another useful and consistent icons pack consisting of all

possible weather icons with seasonal, moon phases, directional, wind directions, etc.

• Materialize [14]: For easy and quick layout for UI we use materialize UI which

follows most of the google material UI design rules and is very consistent.

• jQuery [15]: One of the most useful libraries ever created for manipulating and

accessing the DOM of the app’s native WebView.

https://nysfair.ny.gov/

• Cordova [16]: Mobile application development framework which packages the client

side code written using all the above frontend libraries and can be used to build mobile

apps for various platforms such as Android, IOS, Blackberry, etc..

• Google Maps API [17]: An API which allows developers to display google maps in

your browser or in this case our mobile app’s WebView.

• Animate-CSS [18]: A CSS library which can animate text or an HTML element with

a variety of animation actions.

• Fonts: ‘Helvetica Neue’ is the primary font color for text and ‘Lily’ is the specific

font for the Events heading. Fallbacks to Arial and sans-serif, where fallbacks here

mean the if the font ‘Lily’ is not available, the mobile browser uses Arial and sans-

serif fonts which are available by default.

Chapter 4: Functionality

4.1 Events List Page

Figure 4: Landing page on mobile showing events list

The following section describes the server-side code needed for starting the application(app)

and data needed for rendering the first page of the app presented in figure 4.

4.1.1 Server side

Since this is a relatively small mobile app the entire server code (Node.js) is served in a

single file with two REST API endpoints.

Figure 5 describes the module imports required for our application.

Figure 5: Library Imports for server code

The ‘request’ module is used for acquiring/requesting data from URL and then in the

callback we use the data.

Figure 6 describes the use of middleware ‘body-parser’ module which is used later in

the application to parse data which is sent through a HTTP POST or PUT request.

Figure 6: Body parser middleware

• app.use(bodyParser.json()) module enables the web-server to accept and parse only JSON

formatted data.

• bodyParser.urlencoded({extended: ...}) is a configuration option to enable or disable the

simple algorithm for shallow parsing (i.e. false) or complex algorithm for deep parsing

that can deal with nested objects (i.e. true).

Figure 7: Access Control Headers

Code presented in figure 7 shows Headers for http responses such as allowing requests from

any origin. This is generally not secure since anyone could query for our http request, it is out

of the scope of this project.

Figure 8: Weather API Initialization

In Figure 8, forecast API is initialized with the API key which serves weather information for

any location when queried for with a valid latitude and longitude location. In production code,

API key value is served from environment variables since you do not want to expose your

token to users or anyone who has access to the code base of your application. With node.js this

is generally achieved as follows.

Figure 9: Weather API Initialization with API key used from environment variables

The following code is the first endpoint used in the app. It requests data from NYS fair website

and sends the appropriate content back to the client.

• the request module is used to fetch the HTML page from the URL.

• cheerio module is initialized and the received HTML content if fed to it. It is basically

the jQuery equivalent for server side. It can parse DOM nodes efficiently and can help

us query for all the needed elements.

• From the NYS Fair website ‘. event-info’ class’ <div> tag contains list of all events.

• Specific event list tags are queried which are then stored as event_url, event_name

and event_date and in the form of key value pairs in an Array object.

• After collecting all the event’s information, it is sent back to the client.

Figure 10: GET API endpoint for the list events

Section 4.1.2 describes the client-side code which basically receives this data, and arranges

them in a clean and concise list format which is the first page of our app.

4.1.2 Client-side

The entry for the business logic is written in a single file main.js shown as snippets starting

with Figure 11.

Figure 11: Bootstrapping Angular into HTML

In the first block of code the html element tag is selected and stored in a variable, so that

angular.js code can be bootstrapped into HTML.

Extra code is required to bootstrap angular by wrapping the code in an event Listener. This is

done because the bootstrapping needs to be executed only when all the functionality inside the

Cordova’s WebView is ready and loaded.

Hence, Cordova has this convenient wrapper which can be accessed by JavaScript’s native

event listener ‘deviceready’. The anonymous function after it is called a callback which means

whenever the device is ready, the callback function is executed. This concept is called reactive

programming in general and in JavaScript produces non-blocking code and has embraced it

from a long time. A popular library called ‘RxJS’ embraces this concept and built something

called an Observable. This is beyond the scope of this project, but it is something to keep in

mind.

Figure 12: Route Provider for rendering dynamic views

Figure 12 is code for setting up routing. With Angular we can create single page applications

(SPAs) which is a powerful concept. Dynamic views can be created, used, and this can be

utilized with routing location URL paths to different views pages.

For example, say our application is hosted on https://www.fair-events.herokuapp.com.

If a user visits this URL, then anything after this becomes a relative path, hence ‘/’ resolves to

this URL and hence we can serve up a view which in our case is ‘public/main.html’ which

means in public folder of our codebase main.html file is served.

Figure 13 shows a snippet from main.html file which is loaded as a dynamic view by angular

code from an index.html file which serves main.js file containing the bootstrapped code.

Figure 13: Container div with main heading tag on main.html

In Figure 13, container class div tag which adds some padding to the content to be served.

h3 tag with the custom font-family Lily is used as a header shown as ‘Upcoming Events’ in

Figure 4.

Figure 14: Spinning Loader div layout

Code in Figure 14 makes up an animation i.e., a spinning loader which is useful as it indicates

to the user that the content is being loaded, is represented figuratively in Figure 15.

Figure 15: Spinning Loader in action

User Experience (UX) enhancements like the spinning loader are necessary for a mobile app

since there aren’t clear entry/exit points the user can navigate to, hence developers have to

develop clever and intuitive ways to handle these situations.

Figure 16: controller code in html to display list events

In Figure 13, a custom element called ng-controller is defined and assigned a value. This is

used for placing our angular code inside HTML with the help of something called controllers

whose job is placing the state’s data into the view. The controller is called mainCTRL.

In Figure 16, angular HTML element ng-repeat acts like a loop and all elements inside it

including itself are copied over and the data from each of ‘eventList’, i.e a ‘list’ is placed in

HTML through a concept called ‘interpolation’.

This means data from the list object can be placed in curly braces and it will be read by

HTML as simple string text.

Here we can see list object contains event_name and event_date which are rendered as

shown in Figure 4 with some custom styling applied as appropriate.

Figure 17 shows how this data is set in the controller and picked up by the frontend HTML.

Figure 17: mainCTRL controller

The $scope is a variable which keeps track of all other objects and functions which are

initialized with the $scope keyword attached to them.

$location is used to change views/partials dynamically.

eventFactory is a factory method which is instantiated much like a controller but is used for

different purposes. When the topic of factories is discussed this is explained.

$http is a service which can be used to make http requests from within the code much like

an xhr request, but in a much cleaner way of doing it.

Data is requested from an endpoint which is hosted on Heroku at https://fair-

events.herokuapp.com/ with the help of $http module.

In the success callback, object’s data value is assigned to ‘$scope.eventList’ and added to

the factory’s method ‘addMainList’.

An array of objects that contain key’s event_name and event_date for each event. It is picked

up by our controller defined in HTML as in Figure 16.

Now, when the user clicks on any of the links from Figure 4, i.e. the first page, as per the

Figure 16 and the upcoming Figure 18, user is navigated to ‘/weatherAndMaps’ route and

from Figure 12, routeProvider loads the ‘public/weatherAndMaps.html’ view.

Figure 18: Function which takes user to next view

In the Figure 19 (i), the page is divided into three components.

The first component takes up 50vh which is 50 percent of the Vertical Height of any device

it takes up. This layout would be impractical on a tablet, hence it could dealt with the

orientation of mobile with CSS’s media queries which can be used to style our HTML

depending on the orientation, screen height, width, etc.

It displays all the useful weather information of the location of the event we clicked on in the

first page.

The second component is redundant with the third, but on mobile users won’t notice the minor

navigation icon inside the third component hence a simple link which states ‘TAKE ME

THERE’ makes it look clean and interactive which when clicked upon navigates the user to

the location from his current location by opening the google maps application.

The third component itself is a google maps render of the location of the event for

convenience.

Both the second and third components combined take up 50vh, i.e. bottom half of the

application’s height.

https://fair-events.herokuapp.com/
https://fair-events.herokuapp.com/

4.2 Events Information Page

Figure 19: (i) Events Information view/page on an Android mobile

(ii) Daily data weather information

(iii) Extended weather information

4.2.1 Client side

Figure 20: weatherAndMaps.html

In Figure 20, the controller is defined in the div tag, so that we could serve data for this view

from the controller. It’s code snippets are shown in Figure 21.

Figure 21: eventCTRL controller

In this controller, the HTML element (here a div with a class ‘map_canvas’) is loaded into

a variable ‘map.’

An eventListener to the maps ready event is initialized when the map is ready and the

business logic is written in its callback.

Data is requested through a HTTP call to the second endpoint which is served from our

Heroku hosted backend to the relative URL ‘/api/parseLatAndLongWeather’.

Data sent in the POST request is the event’s url as a string, since HTTP request body accepts

only strings.

In the POST endpoint of our server code, the uri object is extracted from the request’s body.

The request module is used to download the HTML from the URL. The cheerio module once

again is used to initialize HTML to make all its DOM nodes accessible easily like the jQuery

library.

The <p> paragraph tags are extracted under the <div> tag with class ‘. entry-content’.

4.2.2 Server side

Figure 22: POST API endpoint for event information

In these p tags, useful data such as venue location, fee for the event, website URL and

contact information are available which are extracted and sent back as a response JSON

object to the frontend.

4.2.3 Back to client side

The data is handled and sent to the frontend render in the HTML.

Figure 23: success callback of the POST request

The weather data is sent to the factory service’s ‘displayWeather’ function which handles

the first component’s background color based on the ‘time of the day’ and ‘weather

conditions’.

The spinner loader is disabled and various information aspects of the event and weather

information such as current temperature, humidity, wind speed, wind Direction, dew point,

visibility, UV Index, pressure, hourly temperatures for the next 24 hours and daily

temperatures for the upcoming week are stored into various $scope variables so that it is

updated on the frontend appropriately.

The location data is sent to a ‘onMapReady’ function which loads the event’s location

information into the third component which is google maps.

Figure 24: weatherAndMaps.html file: (i) back button and temperature toggle

The first component consists of two div elements.

The first element is the back button which takes the user back to the first page, i.e. the list

of events page.

The second element is the toggle switch for changing temperature units from Fahrenheit

to Celsius scale and vice versa.

(ii) Current temp

The current temperature is placed at the center of the screen from the $scope value

current_temp.

The Hourly Forecast data is retrieved from the hourly variable which is an array, and has

data for the next 24 hours from the current hour onwards. Each of them contains an object

with properties time and temperature.

These are arranged in a single row which expands and can be scrolled to view all the hourly

weather information. Refer Figure 19 (i).

(iii) Hourly weather row data

Similarly, the Daily Forecast has data for forecast for one week from the current date.

(iv) Daily weather in three columns data

Each of the daily array variable obtained from $scope is an object with properties date, icon,

temperatureHigh and temperatureLow.

This data is arranged with an event’s data in each row containing three columns for data from

all three variables. Refer Figure 19 (iv).

Additional weather information such as Wind Speed, Wind direction, Humidity, Pressure,

Dew Point, UV Index, and Visibility is also provided as shown in Figure 19 (v).

(vi) Additional weather information

Figure 19 (vi) shows the link styled like a button which takes us to that location in google

maps from our current location.

(vi) Link to go to Google Maps

As the last step in our HTML, the map component where the google maps plugin would

initialize the map data, is placed in this div.

(vii) div which loads Google Maps

4.3 Improvements and Usability features

4.3.1 Server-side scalability

When building systems, the developer must always account for more traffic i.e. more users

accessing the application. A simple scalable solution for the web-app is developed since the

two endpoints are simple http REST calls.

A master process is set up which forks or creates worker processes depending upon the

number of cores the CPU has. Essentially, this replicates the server code into ‘cpuCount’

separate instances where ‘cpuCount’ is the number of cores of the server. Each worker is

then assigned to serve the same server code in the app.js file.

Figure 25: Master forking worker processes

4.3.2 Client-side enhancements

• In the first page, to scroll seamlessly without using the touchpad of the device, the

user can press the volume buttons to navigate up or down to navigate through the

event list.
• In the second page i.e. the information page, when the user clicks on the toggle switch

a tactile feedback sound is produced.

Figure 26 Toggle Switch State: (i) Toggle Switch off

(ii) Toggle Switch animation happening when user clicks

(iii) Toggle Switch on

References

[1] https://en.wikipedia.org/wiki/Apache_Cordova

[2] https://en.wikipedia.org/wiki/File:Open_source_Apache_Cordova_logo_image.png

[3] https://en.wikipedia.org/wiki/Node.js

[4] https://en.wikipedia.org/wiki/File:Node.js_logo.svg

[5] https://nodejs.org/api/fs.html

[6] https://github.com/expressjs/body-parser

[7] https://expressjs.com/

[8] https://github.com/request/request

[9] https://github.com/cheeriojs/cheerio

[10] https://darksky.net/dev

[11] https://angularjs.org/

[12] http://fontawesome.io/

[13] https://github.com/erikflowers/weather-icons

[14] http://materializecss.com/

[15] https://jquery.com/

[16] https://cordova.apache.org/

[17] https://developers.google.com/maps/documentation/javascript/

[18] https://daneden.github.io/animate.css/

https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/File:Node.js_logo.svg
https://jquery.com/

