
CS 495 & 540
Fall 2018 Artificial Intelligence Midterm
• You have approximately 110 minutes. Use your time wisely; approximately 1 minute per 1 point.

• The exam is closed book, closed notes. There should be sufficient space in the scratch paper area for your
computation. Please do not use any additional personal sheets for computation purpose.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. In general, each sub-problem is worth 5 points unless otherwise specified.

• There are 10 problems worth 112 points for this exam. If your score is more than 100, the exceeding points
will be used as bonus.

First name

Last name
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Q1. [15 pts] Variants of Trees
(a) Pacman is going to play against a careless ghost, which makes a move that is optimal for Pacman 1

3 of the
time, and makes a move that that minimizes Pacman’s utility the other 2

3 of the time.

(i) [2 pts] Fill in the correct utility values in the game tree below where Pacman is the maximizer: Note:
let 9 become -12, 6 become 12

(ii) [2 pts] Draw a complete game tree for the game above that contains only max nodes, min nodes, and
chance nodes.
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(b) Consider a modification of alpha-beta pruning where, rather than keeping track of a single value for α and β,
you instead keep a list containing the best value, wi, for the minimizer/maximizer (depending on the level) at
each level up to and including the current level. Assume that the root node is always a max node. For example,
consider the following game tree in which the first 3 levels are shown. When the considering the right child of
the node at level 3, you have access to w1, w2, and w3.

(i) [1 pt] Under this new scenario, what is the pruning condition for a max node at the nth level of the tree
(in terms of v and w1...wn)?

(ii) [1 pt] What is the pruning condition for a min node at the nth level of the tree?

(iii) [2 pts] What is the relationship between α, β and the list of w1...wn at a max node at the nth level of the
tree?

# ∑
i wi = α+ β

# maxiwi = α, miniwi = β
# miniwi = α, maxiwi = β
# wn = α, wn−1 = β
# wn−1 = α, wn = β
# None of the above. The relationship is
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(c) Pacman is in a dilemma. He is trying to maximize his overall utility in a game, which is modeled as the
following game tree.

The left subtree contains a utility of 12. The right subtree contains an unknown utility value. An oracle has
told you that the value of the right subtree is one of −3, −12, or 24. You know that each value is equally likely,
but without exploring the subtree you do not know which one it is.

Now Pacman has 3 options:

1. Choose left;

2. Choose right;

3. Pay a cost of c = 1 to explore the right subtree, determine the exact utility it contains, and then make a
decision.

(i) [3 pts] What is the expected utility for option 3?

(ii) [4 pts] For what values of c (for example, c > 5 or −2 < c < 2) should Pacman choose option 3? If option
3 is never optimal regardless of the value for c, write None.
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Q2. [10 pts] Games and Utilities
(a) Games. Consider the game tree below, which contains maximizer nodes, minimizer nodes, and chance nodes.

For the chance nodes the probability of each outcome is left child with probability 2/5 and right child with
probability 3/5.

(i) [3 pts] Fill in the values of each of the nodes.

(ii) [4 pts] Is pruning possible?

# No. Brief justification:

# Yes. Cross out the branches that can be pruned.

20 

16 10 

40 

60 

12 8 

50 

(b) Utilities. Pacman’s utility function is U($x) =
√
x. He is faced with the following lottery: [0.5, $36 ; 0.5, $64].

Compute the following quantities:

(i) [1 pt] What is Pacman’s expected utility?

EU([0.5, $36 ; 0.5, $64]) =

(ii) [1 pt] What is Equivalent Monetary Value for this lottery?

EMV ([0.5, $36 ; 0.5, $64]) =

(iii) [1 pt] What is the maximum amount Pacman would be willing to pay for an insurance that guarantees
he gets $64 in exchange for giving his lottery to the insurance company?
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Q3. [9 pts] CSPs: Apple’s New Campus
Apple’s new circular campus is nearing completion. Unfortunately, the chief architect on the project was using
Google Maps to store the location of each individual department, and after upgrading to iOS 6, all the plans for the
new campus were lost!

The following is an approximate map of the campus:

The campus has six offices, labeled 1 through 6, and six departments:

[noitemsep,topsep=0in]Legal (L) Maps Team (M) Prototyping (P) Engineering (E) Tim Cook’s office (T) Secret
Storage (S)

Offices can be next to one another, if they share a wall (for an instance, Offices 1-6). Offices can also be across from
one another (specifically, Offices 1-4, 2-5, 3-6).

The Electrical Grid is connected to offices 1 and 6. The Lake is visible from offices 3 and 4. There are two “halves”
of the campus – South (Offices 1-3) and North (Offices 4-6).

The constraints are as follows:

••••••i. (L)egal wants a view of the lake to look for prior art examples.

ii. (T)im Cook’s office must not be across from (M)aps.

iii. (P)rototyping must have an electrical connection.

iv. (S)ecret Storage must be next to (E)ngineering.

v. (E)ngineering must be across from (T)im Cook’s office.

vi. (P)rototyping and (L)egal cannot be next to one another.

vii. (P)rototyping and (E)ngineering must be on opposite sides of the campus (if one is on the North side, the other
must be on the South side).

viii. No two departments may occupy the same office.
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(a) [3 pts] Constraints. Note: There are multiple ways to model constraint viii. In your answers below, assume
constraint viii is modeled as multiple pairwise constraints, not a large n-ary constraint.

(i) [1 pt] Circle your answers below. Which constraints are unary?

i ii iii iv v vi vii viii

(ii) [1 pt] In the constraint graph for this CSP, how many edges are there?

(iii) [1 pt] Write out the explicit form of constraint iii.

(b) [6 pts] Domain Filtering. We strongly recommend that you use a pencil for the following problems.

(i) [2 pts] The table below shows the variable domains after unary constraints have been enforced and the
value 1 has been assigned to the variable P .

Cross out all values that are eliminated by running Forward Checking after this assignment.

L 3 4

M 1 2 3 4 5 6

P 1

E 1 2 3 4 5 6

T 1 2 3 4 5 6

S 1 2 3 4 5 6

(ii) [4 pts] The table below shows the variable domains after unary constraints have been enforced, the value
1 has been assigned to the variable P , and now the value 3 has been assigned to variable T .

Cross out all values that are eliminated if arc consistency is enforced after this assignment. (Note that
enforcing arc consistency will subsume all previous pruning.)

L 3 4

M 1 2 3 4 5 6

P 1

E 1 2 3 4 5 6

T 3

S 1 2 3 4 5 6
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Q3. [9 pts] Deep inside Q-learning
Consider the grid-world given below and an agent who is trying to learn the optimal policy. Rewards are only
awarded for taking the Exit action from one of the shaded states. Taking this action moves the agent to the Done
state, and the MDP terminates. Assume γ = 1 and α = 0.5 for all calculations. All equations need to explicitly
mention γ and α if necessary. Note: -100 is now -75

(a) [3 pts] The agent starts from the top left corner and you are given the following episodes from runs of the agent
through this grid-world. Each line in an Episode is a tuple containing (s, a, s′, r).

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5
(1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0
(1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0
(2,2), E, (3,2), 0 (2,2), S, (2,1), 0 (2,2), E, (3,2), 0 (2,2), E, (3,2), 0 (2,2), E, (3,2), 0
(3,2), N, (3,3), 0 (2,1), Exit, D, -100 (3,2), S, (3,1), 0 (3,2), N, (3,3), 0 (3,2), S, (3,1), 0
(3,3), Exit, D, +50 (3,1), Exit, D, +30 (3,3), Exit, D, +50 (3,1), Exit, D, +30

Fill in the following Q-values obtained from direct evaluation from the samples:

Q((3,2), N) = Q((3,2), S) = Q((2,2), E) =

(b) [3 pts] Q-learning is an online algorithm to learn optimal Q-values in an MDP with unknown rewards and
transition function. The update equation is:

Q(st, at) = (1− α)Q(st, at) + α(rt + γmax
a′

Q(st+1, a
′))

where γ is the discount factor, α is the learning rate and the sequence of observations are (· · · , st, at, st+1, rt, · · · ).
Given the episodes in (a), fill in the time at which the following Q values first become non-zero. Your answer
should be of the form (episode#,iter#) where iter# is the Q-learning update iteration in that episode. If
the specified Q value never becomes non-zero, write never.

Q((1,2), E) = Q((2,2), E) = Q((3,2), S) =

(c) [3 pts] In Q-learning, we look at a window of (st, at, st+1, rt) to update our Q-values. One can think of using
an update rule that uses a larger window to update these values. Give an update rule for Q(st, at) given the
window (st, at, rt, st+1, at+1, rt+1, st+2).

Q(st, at) =

Q(st, at) =

Q(st, at) =
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Q4. [10 pts] Simulated Annealing
As in PS1 and PS2, we study the simulated annealing and implement the algorithm. Given the following pseudo
code, please answer the following questions:

(a) [5 pts] In the pseudo code above, basically the objective function is to maximum. However, sometimes we
would rather do a minimal search, instead of maximal, while the objective function VALUE remains the same.
Please point out those 2 spots where you need to modify the pseudo code.

(b) [5 pts] In the 3-SAT problem in your PS2, we use the objective function as an indicator for finding the number
of clauses being satisfied. This time, instead of following the pseudo code, you decided to do the jumping with
probability e(1/T ) by ignoring ∆E. What is the biggest problem with this (purely mathematically)?
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Q5. [12 pts] Offline MDP Simulation
Please simulate the MDP using the value iteration for the scenario below and here we will have depreciation rate γ
set to 0.8. Let k be the number of iterations. We know offline MDP has the following formula:

Vk+1(s)← maxa
∑
s′

T (s, a, s′)[R(s, a, s′) + γVk(s′)]

Please simulate and compute that

(a) [6 pts] When k = 1

V1(Cold) =

V1(Warm) =

V1(Overheated) =

(b) [6 pts] When k = 2

V2(Cold) =

V2(Warm) =

V2(Overheated) =
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Q6. [14 pts] Bellman Equations for the Post-Decision State
Consider an infinite-horizon, discounted MDP (S,A, T,R, γ). Suppose that the transition probabilities and the
reward function have the following form:

T (s, a, s′) = P (s′|f(s, a))

R(s, a, s′) = R(s, a)

Here, f is some deterministic function mapping S × A → Y , where Y is a set of states called post-decision states.
We will use the letter y to denote an element of Y , i.e., a post-decision state. In words, the state transitions consist
of two steps: a deterministic step that depends on the action, and a stochastic step that does not depend on the
action. The sequence of states (st), actions (at), post-decision-states (yt), and rewards (rt) is illustrated below.

(s0, a0) y0 (s1, a1) y1 (s2, a2) · · ·

r0 r1 r2

f P f P f

You have learned about V π(s), which is the expected discounted sum of rewards, starting from state s, when acting
according to policy π.

V π(s0) = E
[
R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

]
given at = π(st) for t = 0, 1, 2, . . .

V ∗(s) is the value function of the optimal policy, V ∗(s) = maxπ V
π(s).

This question will explore the concept of computing value functions on the post-decision-states y. 1

Wπ(y0) = E
[
R(s1, a1) + γR(s2, a2) + γ2R(s3, a3) + . . .

]
We define W ∗(y) = maxπW

π(y).

(a) [2 pts] Write W ∗ in terms of V ∗.
W ∗(y) =

# ∑
s′ P (s′

∣∣ y)V ∗(s′)

# ∑
s′ P (s′

∣∣ y)[V ∗(s′) + maxaR(s′, a)]

# ∑
s′ P (s′

∣∣ y)[V ∗(s′) + γmaxaR(s′, a)]

# ∑
s′ P (s′

∣∣ y)[γV ∗(s′) + maxaR(s′, a)]

# None of the above

(b) [2 pts] Write V ∗ in terms of W ∗.
V ∗(s) =

# maxa[W ∗(f(s, a))]

# maxa[R(s, a) +W ∗(f(s, a))]

# maxa[R(s, a) + γW ∗(f(s, a))]

# maxa[γR(s, a) +W ∗(f(s, a))]

# None of the above

1In some applications, it is easier to learn an approximate W function than V or Q. For example, to use reinforcement learning to
play Tetris, a natural approach is to learn the value of the block pile after you’ve placed your block, rather than the value of the pair
(current block, block pile). TD-Gammon, a computer program developed in the early 90s, was trained by reinforcement learning to play
backgammon as well as the top human experts. TD-Gammon learned an approximate W function.
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(c) [4 pts] Recall that the optimal value function V ∗ satisfies the Bellman equation:

V ∗(s) = max
a

∑
s′

T (s, a, s′) (R(s, a) + γV ∗(s′)) ,

which can also be used as an update equation to compute V ∗.

Provide the equivalent of the Bellman equation for W ∗.

W ∗(y) =

(d) [3 pts] Fill in the blanks to give a policy iteration algorithm, which is guaranteed return the optimal policy π∗.

• Initialize policy π(1) arbitrarily.

• For i = 1, 2, 3, . . .

– Compute Wπ(i)

(y) for all y ∈ Y .

– Compute a new policy π(i+1), where π(i+1)(s) = arg max
a

(1) for all s ∈ S.

– If (2) for all s ∈ S, return π(i).

Fill in your answers for blanks (1) and (2) below.

(1) # Wπ(i)

(f(s, a))

# R(s, a) +Wπ(i)

(f(s, a))

# R(s, a) + γWπ(i)

(f(s, a))

# γR(s, a) +Wπ(i)

(f(s, a))

# None of the above

(2)

(e) [3 pts] In problems where f is known but P (s′|y) is not necessarily known, one can devise reinforcement
learning algorithms based on the W ∗ and Wπ functions. Suppose that an the agent goes through the following
sequence of states, actions and post-decision states: st, at, yt, st+1, at+1, yt+1. Let α ∈ (0, 1) be the learning
rate parameter.

Write an update equation analogous to Q-learning that enables one to estimate W ∗

W (yt)← (1− α)W (yt) + α ( )
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Q7. [15 pts] BFS, DFS, Iterative Deepning Search
Given a balanced tree with branching factor = b and height = m. Let suppose the goal is hidden at level k (leave
node is at level 0). We can label the node as the following : (level, how far from the left most node in the same level).
So, root will be (m, 0), then the children of the root will be (1, 0), (1, 1), · · · , (1, b− 1). Please answer the following:

(a) [5 pts] Among the following, let t be the node where the solution is. So, which one guarantees that iterative
Deepening gets defeated by DFS in terms of time complexity? Let assume b = 5,m = 20

(A) t = (10, 5)
(B) t = (18, 5)
(C) t = (3, 320)
(D) t = (15, 0)
(E) t = (0, 10000)

Your answer:

(b) [5 pts] Iterative Deepening outperforms DFS in terms of time complexity.

(A) t = (19, 5)
(B) t = (0, 2)
(C) t = (3, 320)
(D) t = (15, 0)
(E) t = (0, 10000)

Your answer:

(c) [5 pts] BFS outperforms DFS in terms of time complexity.

(A) t = (18, 5)
(B) t = (3, 5)
(C) t = (10, 123)
(D) t = (1, 2)
(E) t = (0, 1)

Your answer:
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Q8. [10 pts] Offline MDP: Value Iteration, Policy Evaluation
and Policy Iteration
We are given the following parameters: S = {s1, ..., sm}: the set of possible states. A = {a1, · · · an}: the set of
actions. Let p(sj |si, at) be defined as the probability of moving from state si to state sj when action at is taken. It
is clear that |S| = m and |A| = n. Suppose the height of the tree is k (i.e. we have level 0, ...., level k) and you are
also given a policy π1 = {ai|ai ∈ A} and |π1| = k. [If explanation is required, answers without justification will not
be given partial credits]

(a)[5] What is the complexity of evaluating the whole tree if the code is simply recursive for the value iteration:

(b) We are morphing (moving) by using policy iteration, from πi then π2, and so on, in order to find the best
policy to achieve optimal, which value iteration does in one shot. Please describe the the complexity of this approach
by describing
(1)[3] How many possible moves (πi policies) are there?

(2)[2] What is the lower bound and upper bound of this policy iteration approach?
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Q9. [8 pts] Games: Alpha-Beta Pruning
For each of the game-trees shown below, state for which values of x the dashed branch with the scissors will be
pruned. If the pruning will not happen for any value of x write “none”. If pruning will happen for all values of x
write “all”. (see next page, you can use this page as scratch paper)
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1

x 3

(a) Example Tree. Answer: x ≤ 1.

2 6

3x4

1 5

(b) Tree 1. Answer:

2x5 6

(c) Tree 2. Answer:

8

x6

4

(d) Tree 3. Answer:

x

42 5

1

(e) Tree 4. Answer:
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Q10. [0 pts] Scratch paper: Do Not Detach
(a) [0 pts]
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Q11. [0 pts] Scratch paper: Do Not Detach
(a) [0 pts]
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Q12. [0 pts] Scratch paper: Do Not Detach
(a) [0 pts]
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