CS 528: Quantum Computation Assessment Exam

MW: 12:00-1:15 pm
10/06/2019

Instructions:

I leave plenty of space on each page for your computation. You have 75 mninutes for this test and the total score is $75+10$ (bonus). Please use your time wisely.

First Names:

Group ID:

Score: $\quad / 75+10$

Problem 1 Formula : 10 pts [Bonus]

Please show that $H^{\otimes n}|j\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{i=0}^{2^{n}-1}(-1)^{i j}|i\rangle$ via induction. Ther term $i j$ is the inner product of vectors $|i\rangle$ and $|j\rangle$ (they are both $\in \mathbb{R}^{n}$).

Problem 2 Qiskit + Deutsch Jozsa : $10+5$ pts

(a) Please write out the Qistkit source code implementing the Deutsch-Joza
(b) Please show the circuit implementing the Deutsch-Joza

Problem 3 Grover : $10+10$ pts

(1) Please mark the area of circuit that is performing the 2nd reflection $2|\psi\rangle\langle\psi|-$ $I[2 \mathrm{pts}]$. And what is missing [need to justify] and why this missing part will not affect the Grover search result[8pts]?

(2) Please show that for a generic Grover, assuming the initial state

$$
|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{i}|i\rangle=\sin \theta|G\rangle+\cos \theta|B\rangle
$$

Please derive and verify the G operator in the the $|G\rangle,|B\rangle$ basis.

Problem 4 Simon's algorithm: $5+5+5$ pts

Suppose we run Simon's algorithm on the following input x (with $N=8$, and hence $n=3$):

$$
\begin{array}{ll}
x_{000}=x_{101}=000 & x_{001}=x_{100}=001 \\
x_{010}=x_{111}=010 & x_{011}=x_{110}=011 \tag{2}
\end{array}
$$

Note that s is a 2-to- 1 and $x_{i}=x_{i \oplus 111}$ for all $i \in\{0,1\}^{3}$, so $s=101$
(a) Give the state after measuring the second register (suppose |001〉)
(b) Give the state after final Hadamards
(c) Suppose the first run of the algorithm gives $j=001$, and the second gives $j=101$. Show that assuming $s \neq 000$, those two runs of the algroithm already determine s.

Problem 5 Analysis Technique Proof: 5 pts

Show that $e^{i A x}=\cos (x) I+i \sin (x) A$ where $A^{2}=I$ and x is some real number.

Problem 6 QFT : 5+5 pts

(1) Please show that

$$
Q F T_{N}|x\rangle=\frac{1}{\sqrt{N}}\left(|0\rangle+e^{\frac{2 \pi i x}{2}}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{\frac{2 \pi i x}{2^{n}}}|1\rangle\right)
$$

where $|x\rangle=\left|x_{1} \cdots x_{n}\right\rangle$ and $N=2^{n}$
(2) Please draw the circuit where $n=3$.

Problem 7 Superdense Coding: $5+5$ pts

(1) Draw the circuit for superdense coding
(2) Verify how Alice sends the message 10 to Bob using the above circuit.

