
CS 495 & 540
Spring 2016 Artificial Intelligence Midterm
• The exam is closed book, closed notes except a one-page crib sheet.

• The total score is 120pts and you have approximately 110 minutes. Use your time wisely. If you get stuck, it
is advised that you should try those questions that are most rewarding with respect to the time it takes you
to solve.

• I leave plenty of space for each problem. Please write your solution on the exam itself. Two blank sheets are
attached at the back of the exam to serve as scratch paper for you. DO NOT detach the sheets.

• If you finish the exam early, please leave the exam on the desk and I will collect it.

First name

Last name

First name of student to your left

First name of student to your right

For staff use only:
Q1. Warm-Up /2
Q2. BFS, DFS, Iterative Deepning Search /10
Q3. CSPs: Properties /12
Q4. X Values /10
Q5. MDPs and RL: Mini-Grids /28
Q6. CSPs: Job Assignments /21
Q7. Dynamic A∗ Search /12
Q8. Theory: Offline MDP: Value Iteration, Policy Evaluation and Policy Iteration /25
Q9. Scratch paper: Do Not Detach /0
Q10. Scratch paper: Do Not Detach /0

Total /120

1

Q1. [2 pts] Warm-Up

Circle the AI mascot that has been used in the slides

2

Q2. [10 pts] BFS, DFS, Iterative Deepning Search
Given a balanced tree with branching factor = b and height = m. Let suppose the goal is hidden at level k (leave
node is at level 0). Please draw a simple graph (along with some brief description) for each sub question:

(a) [5 pts] Iterative Deepening gets defeated by DFS in terms of time complexity. Please brief describe the com-
plexity of each and explain the condition among parameters m, b, k to guarantee this occurs.

(b) [5 pts] Iterative Deepening outperforms DFS in terms of time complexity. Please brief describe the complexity
of each and explain the condition among parameters m, b, k to guarantee this occurs.

3

Q3. [12 pts] CSPs: Properties
(a) [4 pts] What is the maximum number of times a backtracking search algorithm might have to backtrack in a

tree-structured CSP, if it is running arc consistency and using an optimal variable ordering?

(b) [7 pts] Constraint Graph Consider the following constraint graph:

(1)[5] In two sentences or less, describe a strategy for efficiently solving a CSP with this constraint structure.

(2) [3] We say this graph is k-colorable. What is the minimal number that k can be?

4

Q4. [10 pts] X Values
Instead of the Bellman update equation, consider an alternative update equation, which learns the X value function.
The update equation, assuming a discount factor γ = 1, is shown below:

Xk+1(s)← max
a

∑
s′

T (s, a, s′)

[
R(s, a, s′) + max

a′

∑
s′′

T (s′, a′, s′′) [R(s′, a′, s′′) +Xk(s′′)]

]

(a) [6 pts] Assuming we have an MDP with two states, S1, S2, and two actions, a1, a2, draw the expectimax tree
rooted at S1 that corresponds to the alternative update equation.

(b) [4 pts] Write the mathematical relationship between the Xk-values learned using the alternative update equation
and the Vk-values learned using a Bellman update equation, or write None if there is no relationship.

5

Q5. [28 pts] MDPs and RL: Mini-Grids
The following problems take place in various scenarios of the gridworld MDP (as in Project 3). In all cases, A is the
start state and double-rectangle states are exit states. From an exit state, the only action available is Exit, which
results in the listed reward and ends the game (by moving into a terminal state X, not shown).

From non-exit states, the agent can choose either Left or Right actions, which move the agent in the corresponding
direction. There are no living rewards; the only non-zero rewards come from exiting the grid.

Throughout this problem, assume that value iteration begins with initial values V0(s) = 0 for all states s.

First, consider the following mini-grid. For now, the discount is γ = 1 and legal movement actions will always succeed
(and so the state transition function is deterministic).

(a) [2 pts] What is the optimal value V ∗(A)?

(b) [2 pts] When running value iteration, remember that we start with V0(s) = 0 for all s. What is the first
iteration k for which Vk(A) will be non-zero?

(c) [2 pts] What will Vk(A) be when it is first non-zero?

(d) [2 pts] After how many iterations k will we have Vk(A) = V ∗(A)? If they will never become equal, write never.

Now the situation is as before, but the discount γ is less than 1.

(e) [2 pts] If γ = 0.5, what is the optimal value V ∗(A)?

(f) [2 pts] For what range of values γ of the discount will it be optimal to go Right from A? Remember that
0 ≤ γ ≤ 1. Write all or none if all or no legal values of γ have this property.

6

Let’s kick it up a notch! The Left and Right movement actions are now stochastic and fail with probability f . When
an action fails, the agent moves up or down with probability f/2 each. When there is no square to move up or down
into (as in the one-dimensional case), the agent stays in place. The Exit action does not fail.

For the following mini-grid, the failure probability is f = 0.5. The discount is back to γ = 1.

(g) [2 pts] What is the optimal value V ∗(A)?

(h) [2 pts] When running value iteration, what is the smallest value of k for which Vk(A) will be non-zero?

(i) [2 pts] What will Vk(A) be when it is first non-zero?

(j) [2 pts] After how many iterations k will we have Vk(A) = V ∗(A)? If they will never become equal, write never.

Now consider the following mini-grid. Again, the failure probability is f = 0.5 and γ = 1. Remember that failure
results in a shift up or down, and that the only action available from the double-walled exit states is Exit.

(k) [1 pt] What is the optimal value V ∗(A)?

(l) [2 pts] When running value iteration, what is the smallest value of k for which Vk(A) will be non-zero?

(m) [2 pts] What will Vk(A) be when it is first non-zero?

(n) [2 pts] After how many iterations k will we have Vk(A) = V ∗(A)? If they will never become equal, write never.

7

Q6. [21 pts] CSPs: Job Assignments
In some exam, there are a total of 6 questions on the exam and each question will cover a topic. Here is the format
of the exam:

• q1. Search

• q2. Games

• q3. CSPs

• q4. MDPs

• q5. True/False

• q6. Short Answer

There are 7 people on the course staff: Brad, Donahue, Ferguson, Judy, Kyle, Michael, and Nick. Each of them is
responsible to work with Dr. Chiang on one question. (But a question could end up having more than one staff per-
son, or potentially zero staff assigned to it.) However, the staff are pretty quirky and want the following constraints
to be satisfied:

(i) Donahue (D) will not work on a question together with Judy (J).

(ii) Kyle (K) must work on either Search, Games or CSPs

(iii) Michael (M) is very odd, so he can only contribute to an odd-numbered question.

(iv) Nick (N) must work on a question that’s before Michael (M)’s question.

(v) Kyle (K) must work on a question that’s before Donahue (D)’s question

(vi) Brad (B) does not like grading exams, so he must work on True/False.

(vii) Judy (J) must work on a question that’s after Nick (N)’s question.

(viii) If Brad (B) is to work with someone, it cannot be with Nick (N).

(ix) Nick (N) cannot work on question 6.

(x) Ferguson (F) cannot work on questions 4, 5, or 6

(xi) Donahue (D) cannot work on question 5.

(xii) Donahue (D) must work on a question before Ferguson (F)’s question.

8

(a) [2 pts] We will model this problem as a constraint satisfaction problem (CSP). Our variables correspond to each
of the staff members, J, F, N, D, M, B, K, and the domains are the questions 1, 2, 3, 4, 5, 6. After applying
the unary constraints, what are the resulting domains of each variable? (The second grid with variables and
domains is provided as a back-up in case you mess up on the first one.)

B 1 2 3 4 5 6
D 1 2 3 4 5 6
F 1 2 3 4 5 6
J 1 2 3 4 5 6
K 1 2 3 4 5 6
N 1 2 3 4 5 6
M 1 2 3 4 5 6

B 1 2 3 4 5 6
D 1 2 3 4 5 6
F 1 2 3 4 5 6
J 1 2 3 4 5 6
K 1 2 3 4 5 6
N 1 2 3 4 5 6
M 1 2 3 4 5 6

(b) [6 pts] If we apply the Minimum Remaining Value (MRV) heuristic, please list the first three variables that
will be chosen and their associated value. And if the variable has mulitple options, choose the highest value.

(c) [3 pts] Normally we would now proceed with the variable you found in (b), but to decouple this question from
the previous one (and prevent potential errors from propagating), let’s proceed with assigning Michael first.
For value ordering we use the Least Constraining Value (LCV) heuristic, where we use Forward Checking to
compute the number of remaining values in other variables domains. What ordering of values is prescribed by
the LCV heuristic? Include your work—i.e., include the resulting filtered domains that are different for the
different values.

(d) Realizing this is a tree-structured CSP, we decide not to run backtracking search, and instead use the efficient
two-pass algorithm to solve tree-structured CSPs. We will run this two-pass algorithm after applying the unary
constraints from part (a). Below is the linearized version of the tree-structured CSP graph for you to work with.

(i) [6 pts] First Pass: Domain Pruning. Pass from right to left to perform Domain Pruning. Write the
values that remain in each domain below each node in the figure above.

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

(ii) [4 pts] Second Pass: Find Solution. Pass from left to right, assigning values for the solution. If there
is more than one possible assignment, choose the lowest value.

9

Q7. [12 pts] Dynamic A∗ Search
After running A∗ graph search and finding an optimal path from start to goal, the cost of one of the edges, X → Y ,
in the graph changes. Rather than re-running the entire search, you want to find a more efficient way of finding the
optimal path for this new search problem.

You have access to the fringe, the closed set and the search tree as they were at the completion of the initial
search. In addition, you have a closed node map that maps a state, s from the closed set to a list of nodes in the
search tree ending in s which were not expanded because s was already in the closed set.

For example, after running A∗ search with the null heuristic on the following graph, the data structures would be as
follows:

Fringe: {} Closed Node Map: {A:[], B:[], C:[], D:[(A-C-D, 6)]}

Closed Set: {A, B, C, D} Search Tree: {A : [(A-B, 1), (A-C, 4)],
A-B : [(A-B-D, 2)],
A-C : [],
A-B-D : [(A-B-D-G, 7)],
A-B-D-E : []}

For a general graph, for each of the following scenarios, select the choice that finds the correct optimal path and cost
while expanding the fewest nodes. Note that if you select the 4th choice, you must fill in the change, and if you select
the last choice, you must describe the set of nodes to add to the fringe.

In the answer choices below, if an option states some nodes will be added to the fringe, this also implies that the
final state of each node gets cleared out of the closed set (indeed, otherwise it’d be rather useless to add something
back into the fringe). You may assume that there are no ties in terms of path costs.

Following is a set of eight choices you should use to answer the questions on the following page: (the order is changed,
please read carefully)

i. The optimal path does not change, but the cost decreases by n
ii. The optimal path does not change, and the cost remains the same.
iii. The optimal path does not change, but the cost increases by n
iv. The optimal path for the new search problem can be found by adding the subtree rooted at Y that was

expanded in the original search back onto the fringe and re-starting the search.
v. The optimal path does not change, but the cost changes by ?
vi. The optimal path for the new search problem can be found by adding the subtree rooted at X that was

expanded in the original search back onto the fringe and re-starting the search.
vii. The optimal path for the new search problem can be found by adding all nodes for each state in the closed

node map back onto the fringe and re-starting the search.
viii. The optimal path for the new search problem can be found by adding some other set of nodes back onto

the fringe and re-starting the search. Describe the set below.

10

(a) [2 pts] Cost of X → Y is increased by n, n > 0, the edge is on the optimal path, and was explored by the first
search.

(b) [2 pts] Cost of X → Y is decreased by n, n > 0, the edge is on the optimal path, and was explored by the first
search.

(c) [2 pts] Cost of X → Y is increased by n, n > 0, the edge is not on the optimal path, and was explored by the
first search.

(d) [2 pts] Cost of X → Y is decreased by n, n > 0, the edge is not on the optimal path, and was explored by the
first search.

(e) [2 pts] Cost of X → Y is increased by n, n > 0, the edge is not on the optimal path, and was not explored by
the first search.

(f) [2 pts] Cost of X → Y is decreased by n, n > 0, the edge is not on the optimal path, and was not explored by
the first search.

11

Q8. [25 pts] Theory: Offline MDP: Value Iteration, Policy
Evaluation and Policy Iteration
We are given the following parameters: S = {s1, ..., sm}: the set of possible states. A = {a1, · · · an}: the set of
actions. Let p(sj |si, at) be defined as the probability of moving from state si to state sj when action at is taken. It
is clear that |S| = m and |A| = n. Suppose the height of the tree is k (i.e. we hav level 0,, level k) and you are
also given a policy π1 = {ai|ai ∈ A} and |π1| = k. [If explanation is required, answers without justification will not
be given partial credits]

(a)[4] What is the complexity of one level iteration for value iteration? Why?

(b)[4] What is the complexity of one level iteration for policy iteration? Why?

12

(c)[4] What is the complexity of evaluating the whole tree if your code is simply recursive for the value iteration
? Why?

(d)[4] What is the complexity of evaluating the whole tree if your code is simply recursive for the policy
evaluation? Why?

13

(e) We are morphing (moving) by using policy iteration, from πi then π2, and so on, in order to find the best
policy to achieve optimal, which value iteration does in one shot. Please describe the the complexity of this approach
by describing
(1)[3] How many possible moves (πi policies) are there?

(2)[6] What is the lower bound and upper bound of this policy iteration approach? Why?

14

Q9. [0 pts] Scratch paper: Do Not Detach
(a) [0 pts]

15

Q10. [0 pts] Scratch paper: Do Not Detach
(a) [0 pts]

16

