
CS 240: Data Structure
Problem Set 3

Due: 04/26/2020

Instructions:
Please follow the instruction given at each problem for submission. The deadline of
each assignment is 11:59 pm on the due date, unless otherwise specified. It is impor-
tant that your code/solution is straight forward, not cumbersome. At the beginning
of each cpp file, you must include the following:
1. Description: description of the program (later we will elaborate this more, but
for now, just describe what the program does)
2. Author: the person who writes this program
3. Date: the very last date/time the program is modified

First Name:

Last Name:

Score: /130



Problem 1 2

Problem 1 Recursion + Complexity: 10 + (10+10) pts

In chapter 10 we discussed about the top down method for the Fibonacci function
and we concluded that its recursion implementation is not a good approach.
(a) Please explain why the implementation is inefficient and give it an estimate on
its complexity.

(b) Can you design and implement another approach such that your implementation
has a better complexity? Please implement your own Fibonacci function and please
justify its efficiency by providing the complexity.

CS 240 Spring 2020



Problem 2 3

Problem 2 Recursion: 20pts

(1) Recall in your MAT 115 class you learned about GCD (greatest common divisor).
Please write a recursive function GCD(int a, int b) that computes the gcd of a and
b.

(2) Please write a recursive function VectReverse to reverse a vector of type T. [Hint:
vector has size function, and template helps with a generic type]

CS 240 Spring 2020



Problem 3 4

Problem 3 Sparse matrix : 10+10+20+10 pts

We explained the cumbersome implementation of a sparse matrix structure in doubly
linkedlist. One of the major problem is random memory access due to the nature
constraint of linkedlist (too much freedom and hard to calculate the exactly location
of a particular item with one shot). We provided the bruteforce vector version of the
implementation as an alternative. However, it is not ideal because in that approach
it still loads all those zero entries into the matrix A. Matrix linear algebra is quite
important in advanced computer science topics. To attack this problem, you have to
do the following:

(1) Write a function GenMatrix(int n) that takes the input size n to generate
a random double matrix A of size n by n while the number of nonzero entries in each
row is blog nc.

(2) Come up with a vector based container VectA that can efficiently represent your
matrix A. (we want this VectA to be as small as possible)

(3) Generate a random vector x where x = (x1, ..., xn) is of size n by 1 (it can-
not be an all zero vector). and rewrite your operate* function that does A ∗ x. let us
call the resultant vector B = (B1, ..., Bn). Clearly B is also an n by 1 vector. Clearly,
in the old operate* operation, A∗x involves n big operations as for entry Bi we know

Bi =
n∑

j=1

Aij × xj

while each big operation takes n pairs of mutliplication plus n− 1. Hence, the total
number of opreations is approximately n ∗ (2n − 1) ' 2n2. Please explain the com-
plexity of your own operate* function when the input size of A is n by n.

(4) Finally, let assume each operation takes 1 second, and n = 105. How long will it
take for the old operate* to finish the computation? And how long will it take for
your operate*?

CS 240 Spring 2020



Problem 4 5

Problem 4 Chapter 12: BST Modification: 15 + 15 pts

Two parts for this problem. One is the coding that is 35 pts and one is the explana-
tion that is worth 15 points.

Part I:
Please modify the BST code (with insertion, deletion) uploaded in blackboard to
avoid un-necessary recursion calls in the deletion function. It is where they swap the
found smallest element of the right subtree element and the matched element. Please
figure how this step could have been eliminated. Also, at the bottom of the deletion
function, it branches out to search left and right subtrees, which can also be avoided
if we know the relation between the value to be removed and the value of current root.

Part II:
Please explain how and why (like giving concrete example situation) where your code
will definitely outperform the given original code.

CS 240 Spring 2020


