State University of New York Polytechnic Institute  
CS 503/240 : Data Structures

Instructor: Dr. Chen-Fu Chiang  
Semester: Fall 2020  
Time: TR 10:00 am - 11:50 am  
Location: SUNY Poly Blackboard  
Office Hours: (online) MW: 1:15 pm - 3:15 pm | F: 10:30 am - 11:30 am | By appointment  
Office: Kunsela C225  
Email: chiangc@sunyply.edu (best way to reach me)  
TA: Abhigna Vemula | Kanishka Kanapuram  
Office Hours: R: 2:00 pm - 3:00 pm  
Email: vemulaa@sunypoly.edu | kanapuk@sunypoly.edu  
Note: Office hours are online via Blackboard Collaborate Ultra

Text and References

Course Description
Completion of CS 108 - Computing Fundamentals or its equivalent with a minimum grade of "C" is required of computer science, information systems, or applied computing majors to take this course. MAT 115 – Finite Mathematics or MAT 413 – Discrete Mathematics or their equivalents at other colleges - with a minimum grade of “C” is similarly required for students in these majors. Students in other majors with a grade(s) less than a full "C" in these courses, or who have not taken Finite or Discrete Mathematics, are accommodated as a courtesy, but generally do not do well in this course. A minimum grade of "C" in this course is a prerequisite for most intermediate and advanced CS and IS courses.

Course Structure
This course is a combination of lecture, discussion, and outside work. Students are encouraged to raise questions at any time. The basic course material is covered in the text; additional material will be introduced via handouts, and will be posted on the Blackboard course site. At the college level students should spend about two hours outside the classroom working on a course (a combination of reading, studying, and homework) for each hour of class meeting time. This means that students should expect to spend about eight hours per week outside the classroom working on CS 240.

Student Learning Outcomes

- Apply a knowledge of computing and mathematics to solve problems appropriate to the level of the course
- Analyze a problem and describe, select, employ, and analyze data structures such as lists, stacks, queues, trees, heaps.
- Be able to describe and compare fundamental algorithms of searching, sorting, and hashing.
- Be able to appropriately code algorithms in programming languages, such as C++.
- Be able to employ both procedural and object-oriented programming paradigms.
- Be able to analyze algorithm complexity using Big O notation. An ability to apply knowledge of computing and mathematics appropriate to the program’s student outcomes and to the discipline

**Topics**

- Software Development
- Introduction to Abstract Data Types (ADTs)
- Structures and Classes
- I/O and String Classes
- Data Structures
  - Lists
  - Stacks
  - Queues
  - Recursion
  - Other Linked Lists
  - Trees, Hash Tables
- Sorting
- Algorithm Efficiency
- Object Oriented Programming (OOP) and ADTs
- If time allows, we will explore topics such as Dynamic Programming.

**Grading (Tentative)**

The lecture format will be the basic mechanism used in the course. Computer demonstrations in the classroom will be used whenever appropriate. Assessment of student performance will use a criterion-referenced model which will include written assignments, programming assignments and quizzes (50%), regular examinations (midterm(s) 25%), and a comprehensive final exam (25%). Unless otherwise specified, all the material must be submitted via Blackboard. Late homework will not be accepted unless you have made prior arrangements with me. The acceptable format of your solution will be specified in the assignment. All examinations are closed-book. A typical grading scale will be as follows:

<table>
<thead>
<tr>
<th>Percent</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>97 - 100</td>
<td>A+</td>
</tr>
<tr>
<td>93 - 96</td>
<td>A</td>
</tr>
<tr>
<td>90 - 92</td>
<td>A-</td>
</tr>
<tr>
<td>87 - 89</td>
<td>B+</td>
</tr>
<tr>
<td>83 - 86</td>
<td>B</td>
</tr>
<tr>
<td>80 - 82</td>
<td>B-</td>
</tr>
<tr>
<td>77 - 79</td>
<td>C+</td>
</tr>
<tr>
<td>73 - 76</td>
<td>C</td>
</tr>
<tr>
<td>70 - 72</td>
<td>C-</td>
</tr>
<tr>
<td>65 - 69</td>
<td>D+</td>
</tr>
<tr>
<td>60 - 64</td>
<td>D</td>
</tr>
<tr>
<td>Below 60</td>
<td>F</td>
</tr>
</tbody>
</table>
Students are expected to produce professional quality programs adhering to the following criteria:

- The problem must be completely solved. The sophistication of the solution will be considered in determining the grade. The program must demonstrate mastery of the topics and techniques being covered at that point in the course even if there are better solutions using other techniques. All paths through the program must produce correct results (or the program is unacceptable). Assignments that are returned because they are unacceptable will be penalized per returned submission.

- The documentation must be complete and the program layout must be visually appealing. Each program and each function must contain a statement of purpose, name of author, date of creation, revision number (if any), date of last revision, language, compiler used and citation of sources. Intra-code commenting of obscure code is expected. Variable names must be rational. The use of correct grammar and spelling in user prompts is assumed; the penalty for sloppy English will be harsh.

- Programs must be crash-proof (commensurate with the level of sophistication of the assignment). User prompts (if any) must be clear, precise, grammatically correct, and correctly spelled. In the absence of warnings any user input is fair game. You should not expect the user to remember a complex series of instructions; programs should be user friendly. Programs should be able to recover from illegal data entry.

- Assignments should be submitted on-time; this will help students stay "up-to-date" with the coursework. Due dates may be adjusted if the lecture schedule falls behind. Programs will not be graded prior to the due date. It is in the student’s best interest to submit problem set solutions on time.

**Attendance Policy**

Attendance and active class participation are required. Be prepared to participate by asking and answering questions during class meetings. Please send me an email if you know you have to miss a class.

**Academic Integrity/Policy**

Plagiarism and Cheating of any kind on an examination, quiz, or assignment will result at least in an F for that assignment (and may, depending on the severity of the case, lead to an F for the entire course). I will assume for this course that you will adhere to the academic creed of this University and will maintain the highest standards of academic integrity. In other words, do not cheat by giving answers to others or taking them from anyone else. The code of academic conduct is detailed on the SUNY Poly student handbook. Make-ups are only given under extreme circumstances. I will also adhere to the highest standards of academic integrity, so please do not ask me to change (or expect me to change) your grade illegitimately or to bend or break rules for one person that will not apply to everyone.

**Plagiarism Warning**

The work you submit must be your own. You will not receive credit for work which is not your own. You may ask others (classmates/friends/instructors) for advice or help regarding the subject matter of a problem set. However, your answers and the actual design, coding, entry, and running of your programs must represent your own work. All sources of ideas that are used in any way (quoted, paraphrased, or summarized), including ideas taken from the text, must be acknowledged in problem set program documentation. Failure to provide proper attribution constitutes academic dishonesty, and it will result in a failing course grade. Substantially identical program submissions by multiple students, even with attribution, may result in a failing course grade to all who submit the same program. Submitting a program written by someone else, even with attribution, is strictly prohibited and will result in a failing course grade. Students are further reminded that it is their responsibility to take reasonable precautions to prevent copying of their work by other students and that there are now criminal penalties for computer trespass and computer tampering. Note: Selective enforcement of plagiarism does not constitute a valid defense.
Academic Adjustments for Students with Disabilities
In compliance with the Americans with Disabilities Act of 1990 and Section 504 of the Rehabilitation Act, SUNY Polytechnic Institute is committed to ensuring comprehensive educational access and accommodations for all registered students seeking access to meet course requirements and fully participate in programs and activities. Students with documented disabilities or medical conditions are encouraged to request these services by registering with the Office of Disability Services. For information related to these services or to schedule an appointment, please contact the Office of Disability Services.