Instructor: Dr. Chen-Fu Chiang
Semester: Spring 2019
Lecture Time: MWF 9:20 am - 10:30 am
Recitation: F 10:40 am - 11:50 am
Location: Kunsela A129
Office Hours: MW: 10:30 am - 11:30 am | 3:30 pm - 4:30 pm
F: 10:40 am - 11:50 am (MAT 115 recitation) | by appointment
Office: Kunsela C225
Email: chiangc@sunypoly.edu
Phone: 315-792-7379

TA: Kiran (kanukos@sunypoly.edu) and Surya (kolaves@sunypoly.edu)
Office Hours: R 2:00pm - 3:00 pm (Kiran) 3:00pm - 4:00 pm (Surya)
Location: Kunsela C122

Text and References
The material is mainly based on my lectures. There have been various textbooks for this subject. I would recommend you check the following textbooks (resources) and decide which one suits you.

Discrete Mathematics and Its Applications
Kenneth Rosen

Discrete Mathematics
Sandy Irani
Zybooks

Lectures in Discrete Mathematics
Edward A. Bender and S. Gill Williamson
http://cseweb.ucsd.edu/~gill/BWLectSite/.

Exams and homework problem sets from previous semesters for your practice.

Course Description and Goals
Math 115 Finite Mathematics for Computer Scientists will cover a number of topics useful to students majoring in Computer and Information Science (CS), Computer and Information Systems (IS), Applied Computing, and Network and Computer Security (NCS). See the course outline below for details of our coverage.

Course Goals
• Introduce students to finite mathematics and motivate the topic through examples from computer science
• Introduce the basics of propositional and predicate logic, concepts from set theory, functions, relations, lists, several methods of logical proof, and introduce students to the basics of probability theory, counting techniques, and graph theory
• Provide students with a framework of homework assignments and assessments that develop their logical problem-solving capabilities

Student Learning Outcomes

• An ability to apply knowledge of computing and mathematics appropriate to the programs student outcomes and to the discipline

• An ability to use current techniques, skills, and tools necessary for computing practice

• An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices

Topics

• Arithmetic and Logic
 – Boolean Functions
 – Truth Table
 – (Propositional + Predicate) Logic

• Numbers, Sets and Functions
 – Number Theory
 – Proof Techniques
 – Sets
 – Functions and Permutations

• Lists, Probability and Graphs
 – Lists and Counting
 – Introduction to Probability Theory
 – Basic Concept in Graph Theory

• If time allows, we will explore topics such as Optimization Problems.

Grading (Tentative)
The lecture format will be the basic mechanism used in the course. Computer demonstrations in the classroom will be used whenever appropriate. Assessment of student performance will use a criterion-referenced model which will include written assignments and quizzes (40%, quizzes are based on reading assignments), regular examinations (midterms 40%, the best 2 of 3 midterm scores will be counted), and a comprehensive final exam (20%). It is encouraged that you work in groups when solving homework problems. A group of size three is encouraged. Due to the size of the class, and the logistics involved, late homework will not be accepted unless you have made prior arrangements with me. The acceptable format of your solution will be specified in the assignment. All examinations are closed-book. A typical grading scale will be as follows:
Percent Grade
97 - 100 A+
93 - 96 A
90 - 92 A-
87 - 89 B+
83 - 86 B
80 - 82 B-
77 - 79 C+
73 - 76 C
70 - 72 C-
65 - 69 D+
60 - 64 D
Below 60 F

Attendance Policy
Attendance and active class participation are required. Be prepared to participate by asking and answering questions during class meetings. Please send me an email if you know you have to miss a class.

Academic Integrity/Policy
Plagiarism and Cheating of any kind on an examination, quiz, or assignment will result at least in an F for that assignment (and may, depending on the severity of the case, lead to an F for the entire course). I will assume for this course that you will adhere to the academic creed of this University and will maintain the highest standards of academic integrity. In other words, do not cheat by giving answers to others or taking them from anyone else. The code of academic conduct is detailed on the SUNY Poly student handbook. Make-ups are only given under extreme circumstances. I will also adhere to the highest standards of academic integrity, so please do not ask me to change (or expect me to change) your grade illegitimately or to bend or break rules for one person that will not apply to everyone.

Accommodations for Students with Disabilities
Accommodations for Students with Disabilities In compliance with the Americans with Disabilities Act of 1990 and Section 504 of the Rehabilitation Act, SUNY Polytechnic Institute is committed to ensuring comprehensive educational access and accommodations for all registered students seeking access to meet course requirements and fully participate in programs and activities. Students with documented disabilities or medical conditions are encouraged to request these services by registering with the Office of Disability Services. For information related to these services or to schedule an appointment, please contact the Office of Disability Services using the information provided below.

Evelyn Lester, Director
Office of Disability Services
lestere@sunypoly.edu
(315) 792-7170

Utica Campus
Peter J. Cayan Library, L145

Albany Campus
Suite 309, Students Services Office
NanoFab South